Existence and non-existence of area-minimizing hypersurfaces in manifolds of non-negative Ricci curvature
نویسندگان
چکیده
منابع مشابه
Non-negative Ricci Curvature on Closed Manifolds under Ricci Flow
In this short paper we show that non-negative Ricci curvature is not preserved under Ricci flow for closed manifolds of dimensions four and above, strengthening a previous result of Knopf for complete non-compact manifolds of bounded curvature. This brings down to four dimensions a similar result Böhm and Wilking have for dimensions twelve and above. Moreover, the manifolds constructed here are...
متن کاملReal Hypersurfaces of Cp with Non-negative Ricci Curvature
We prove the non-existence of Levi flat compact real hypersurfaces without boundary in CPn, n > 1, with non-negative totally real Ricci curvature.
متن کاملMetrics with Non-negative Ricci Curvature on Convex Three-manifolds
We prove that the space of smooth Riemannian metrics on the three-ball with non-negative Ricci curvature and strictly convex boundary is path-connected; and, moreover, that the associated moduli space (i.e., modulo orientation-preserving diffeomorphisms of the threeball) is contractible. As an application, using results of Maximo, Nunes, and Smith [MNS], we show the existence of properly embedd...
متن کاملExistence of Complete Conformal Metrics of Negative Ricci Curvature on Manifolds with Boundary
We show that on a compact Riemannian manifold with boundary there exists u ∈ C(M) such that, u|∂M ≡ 0 and u solves the σk-Ricci problem. In the case k = n the metric has negative Ricci curvature. Furthermore, we show the existence of a complete conformally related metric on the interior solving the σk-Ricci problem. By adopting results of [14], we show an interesting relationship between the co...
متن کاملNon existence of totally contact umbilical slant lightlike submanifolds of indefinite Sasakian manifolds
We prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic proper slant lightlike submanifolds. We also prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian space forms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Mathematics
سال: 2016
ISSN: 1080-6377
DOI: 10.1353/ajm.2016.0009